

AN OVEROPS WHITE PAPER

Net New Machine Data and
Code-Aware Insight with OverOps

SECTION ONE: THE PROBLEM

Data differentiates

Data has evolved to become the ultimate tool to differentiate from your competition. Whether
it be IoT, social or even just the transactional data found in our persistent stores, capturing all
of it, extracting insights from it and using it to fuel business decision is the new norm for the
modern enterprise. And typically, the more data you have the more insight you can gather. We
rarely see data exhaust anymore as we move to instrument everything. But this isn’t
completely true.

Ironically, the software we deploy in these modern applications is also leaving massive
amounts of information on the data center floor. There is a layer of data that nobody has really
thought to capture because it seemed impossible. It’s the data that is created by the actual
execution of the lines of code that power just about everything we do. It’s the data that’s inside
the engine, not just the exhaust we choose to emit.

Humans are human, logs are logs

For decades we have relied upon log data as our main source for gathering insight from our
applications. They are incredibly useful but are not without limitation. While log files help
identify when something has gone wrong, they only provide limited insight into “what” has
actually happened. The root of this problem isn’t the logging mechanism; it is the fact that we

Page 1 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

rely on a manual, human process to extract the data we need from our applications and
services to gain insight into “what” has actually gone wrong.

There are two consumers of log files, human and computers. The human group is typically a
developer who needs log files to identify where something went wrong in their code. They’ll
use logging statements to extract a few variables from the moment of execution and hope
this is enough information to glean insight into the problem. For some of the best developers,
they “know” their code and it works pretty well, but what about junior programmers and new
members of the team? What about third party code and legacy code?

To illustrate this fundamental defect, let’s consider a log statement which surfaced because
of a failed call into an Amazon Web Service. This caused an exception to be thrown and the
developer “caught” this using the following:

“ERROR: Failed to complete AWS operation APPROVE_CREDIT

for user jim@acme.com with error code AMAZON_FAIL”

The first issue, it is nearly impossible to understand just by reading the statement which part
of it is the template and which are the variables that were used within, so how are we to apply
consistent structure. Also, without further context you cannot discern the location in the code
where this happened or which transaction was involved.

In this case, we are lucky that the developer chose to actually “catch” this exception. Without
this manual check, this error would have gone undetected. These uncaught or not logged
exceptions could be especially dangerous because you’ll never know what you don’t know and
this could have had significant impact on your customers.

The second consumer of log files are machines. Included in this group are the log analyzer
tools, the shell scripts built by sys admins and the grep functions we use to sift through these
massive files. This group lives and dies by any sort of structure they can extract from the log.
Unfortunately, when it comes to a common approach to logging application issues, we still
rely on the humans to write logging statements and even with the most complete and
effective best practices, the process will still fall short. What’s worse, without any sort of
common language and structure, it is nearly impossible to categorize events. What’s worse, is
that current log analysis tools have no way to deduplicate these items other than rely on full
text of an event and there is no way to discern similar code methods based on where they are
executed in the code base.

In summary, code does not comment itself and certainly doesn’t log itself either (or does it?).
There are four main challenges with the human element involved in our logging process:

Page 2 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

1. Log statements are manual and shallow
Logging frameworks are a core part of every programming language because they
allow developers to record information from within an app to a file so they can use it
for some purpose, typically troubleshooting. Herein lies the problem. The developer
manually chooses where log statements are used and they also decide what
information will be sent to the log file. This information is typically shallow, providing
just a few variables that are often just representations of values or shorthand of what
needs to be communicated. It is a tiny portion relative to the complete context of
what is happening in the app at that moment. We’ll talk more about verbosity in a bit.

2. Searching through log files and classification of entries is tricky
Log files lack much structure and in order to sift through them you are required to use
grep, grok, regex, etc. or other more advanced tools. Regardless of how you process
them, you are still challenged by their shallow nature and you ability to find new errors
or distinguish one error form the next is difficult. Classification and de-duplication of a
log file entries is nearly impossible. Further, it is nearly impossible to correlate a log
statement with a specific version of code.

3. Log files provide limited visibility
Related to the manual nature of a log file, they are also not comprehensive across
every error and exception. You only get what you log and further, you only get what
you catch. Log files give you no visibility into uncaught or swallowed exceptions.

4. Tracking down and tracing errors in microservices is impossible
As the world transitions to microservices, we are also introducing complexity. What is
an application in this new world and how do we troubleshoot error across multiple
services? What is the execution stack in this new world? Some frameworks have
been introduced to trace events across services, but they are good for performance
tracking only.

Log files have been with us for ages and are valuable but how much time have we spent
sifting through them to find what we need? How much time have we spent deciphering log
information in order to troubleshoot a complex problem when we could have spent that time
delivering new features? How often do we rollback a release, add logging verbosity, deploy a
hotfix, and wait for the issue to happen again? How much can we rely on a log file to inform us
how safe it is to promote code? Do we really know?

It’s not just humans, It’s also the machines

To further complicate this challenge, there is a set of logging levels that we use to determine
what log statements might be executed in what environment. We have created this framework
so that we can save on system performance. However, the more verbose your logging is, the
more significant impact it will have on the performance of your application as it wastes CPU

Page 3 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

cycles and slows down systems because of the time needed to collect additional information
or display additional logging details.

Verbose logging also increases the size of the log file which can make it difficult to find the
signal in the noise. (NOTE: And in the world of microservices, this issue is exaggerated as we
are creating an exponential amount of application exhaust across multiple, disconnected
distributed services that all need to be aggregated and then searched through to gain insight
into where our systems are failing.) And again, without structure, this becomes intolerable.

To effectively address some of these issues, developers use log levels that can be turned
on/off depending on which environment code is running. In production, you don’t need
everything and want to optimize for performance. The basic logging levels we define include:

● ERROR/FATAL – At this level, something terribly wrong has happened and the issue must be
resolved immediately. Some examples: an unavailable database or a critical service is
unresponsive. And even ERROR is often used to warn or present lower level priority issues.
There is little or no standardization in most organizations. Is an ERROR and error?

● WARN – At this level, the system might continue, but with caution as the system can tolerate
the issue and justify continuing as there might be a workaround. Some examples might be a
lookup has failed but cached values can be used or a queue is near full.

● INFO – typically used to communicate information about an event to inform the business logic .
some examples might include a statement when an order has been placed or fulfilled or when
an event is sent to an external system.

● DEBUG – This is the world of the developer and typically the most valuable information used in
the troubleshooting process. Typically, they will include a few variables and a comment.

● TRACE – This is typically very detailed information that is intended for development use only
and is often confused in use with DEBUG. They should be temporary information that should be
stripped once code is committed. The distinction between DEBUG and TRACE is the most
difficult to discern.

With all this granularity, you would think we could get pretty efficient in our use of logging;
however, it’s widely accepted that developers generally use DEBUG and INFO only.

Logging frameworks are a foundational element of every language, but they were created over
thirty years ago, back when the cost of CPU was severely limiting . And more than anything,
performance is the critical gating factor for the amount of application exhaust we create.

There has to be a better way

This logging stuff all seems so very thirty years old. We’ve advanced nearly every part of the
software supply chain but log files haven’t changed much at all since they were first

Page 4 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

introduced. We’ve created tools and frameworks that allow us to use them more effectively,
but the fundamental challenges noted above still remain.

So, what if we took a step back and looked at this problem in a new way. What if we could
intelligently capture and structure the entirety of information related to an error or exception.
What if this information was code-aware and had contextual insight into the whole application
or service it was found in? This isn’t just about getting more data, it is about getting the right
data and delivering in a more useful format.

SECTION TWO: OVEROPS DATA

OverOps developed a unique approach to gathering machine data and it changes the way we
think about log files and how we use them to both troubleshoot and to derive the overall
quality of an application or service. OverOps combines static and dynamic analysis to collect
complete contextual data for every error and exception thrown in an application with minimal
performance impact, securely and without any requirement to modify code. It is code-aware
and delivers net new and structured machine data that provides granular detail about every
error, its related application and the environment in which it was found.

This section outlines the data and the methods we use to extract it from your applications and
services and it is organized into three parts. We start with a description of the unique
elements OverOps uses. We then talk through the explicit data we are able to extract, process
and create from these elements and then provide an overview of how this data can be used.

Code Graphs and Snapshots NOT log files

First and foremost, OverOps is completely independent of log files. In fact, our technology
allows us to precede the creation of a log file entry so we can augment them. As we will speak
to later, this allows us to place links to our platform in a log file so they can be connected to
the OverOps data.

There are two foundational elements to our data collection strategy, a code graph and a
snapshot. Deployed using a combination of an agent, collector and analysis server (see our
architecture doc for more details), these foundational elements work together to not only
extract data but to do so without considerable impact on performance or development.

A Code Graph is an index of all possible execution paths within explicit application code and is
unique to every build or release. It’s a map of the application or service. OverOps creates this
secure code graph every time code is loaded from a company’s “build” pipeline into a live
software virtual machine (SVM) - in this case a JVM or the .NET CLR. The code graph is a

Page 5 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

unique representation of that bytecode that can also be used to map every build and tie back
to a build number.

To build the code graph, the code is analyzed to create a map of where and why the code may
log or encounter exceptions (i.e. break), and it is used to determine an optimal strategy to
collect information from the code running in the SVM. This map of all execution paths not only
provides the critical context for each error, but it also allows OverOps to predict when an event
might happen so it can optimize performance of this function and even catch the uncaught.

And as with all things in the OverOps Platform, a code graph is built with security and data
privacy as a primitive goal. OverOps uses a redaction technique called “One-way hashing” to
make sure that the bytecode we use can never be reverse-engineered into human readable
source code by us, or anyone else. The code graph is an abstract graph of connections
between variables that lacks knowledge of the data types or values themselves. It is also this
code graph that allows us to proactively redact private information when we collect data.
More on these security aspects later.

A Snapshot is the physical collection of the machine data at the moment an error is logged or
an exception is thrown. This is the net new data that has never been captured before. With the
code graph as a map, each snapshot is analyzed and processed to extract code, contextual
values of variables and the state of the virtual machine and physical host. It is the dynamic
element of this process and it is what captures the data that flows through the code pipeline.
Some of the data we collect directly from each snapshot includes the following:

● Variable State Across Entire Call Stack
OverOps extracts the value of every variable across the entire execution stack so you
have complete context across every function involved in every issue. As opposed to
logs where you will only get what you choose to place in a logging statement and
generally this is just a few items, a fraction of what’s really happening.

● Execution Pipeline Source Code
OverOps intelligently reconstructs full source code from the bytecode that was
captured in the execution pipeline. The source code is never exposed outside the
system until an authorized user (your developer) needs to see it. OverOps also
overlays the full stack variable state on top of the source code to make it easy to
inspect what has happened in code. Without OverOps, you might waste time finding
the right code versions, getting access, checking it out and then reconstructing the
code pipeline.

● Memory State
OverOps captures data 10 layers deep into the heap and presents this to you in an
easy to consume format in the context of the error or exception so you can can
readily identify the objects that are filling up memory. Without OverOps you would

Page 6 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

have to be manually collecting this information, and for a production error getting this
information is typically impossible.

● State of Garbage Collection
OverOps provides the state of your Garbage Collection when an error occurs so you
can determine if they are taking too long or if too much time is being spent in a pause
and if you need to readjust your garbage collection strategy. You can only try to
recreate these issues in dev and can typically get this in production.

● Operating System, Environment Variables and System Properties
OverOps captures the operating system type, version number, number of processors
and system load percentages as well as a complete list of all environment variables
/system properties so you can detect related issues to the machine (or vm or
container) the application is running. Visibility into these items might be easy in
development, but again, in staging and production this is often difficult information to
capture.

● Active Threads
OverOps also provides with a complete list of all threads, their status and timing so
that you can quickly identify thread contention or deadlock issues. While relatively
straightforward to identify these in development, this is near impossible to obtain in
production.

While each of these items can be extremely valuable, this isn’t all the data that OverOps can
capture. As we will see in the next section, there is a much deeper layer of contextual insight
that can be gathered from snapshots because of the unique “code-aware” approach to
gathering this data.

The benefits of the OverOps code graph: being “code-aware”

The code graph not only allows for performance gains, but it is also critical in the collection of
data from your applications and services. It is what makes OverOps code-aware, allowing us
to know what has happened and sometimes what hasn’t happened. This deep level of insight
is completely unique to OverOps and it also allows us to understand the structure for each
event. It allows us to treat machine data as code.

The code graph allows OverOps to deliver a lot of net new insight, but the most valuable
benefit is it allows us to identify uncaught and swallowed exceptions. The code graph
provides the intelligence to allow OverOps to understand when it should capture an event that
a developer never thought to capture or where they may have stubbed in a response and
never came back and addressed it. These are issues that were once impossible to identify and
are often the most painful production issues to deal with. They simply aren’t in log files so you

Page 7 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

might never chase them down until it is too late after a customer complains or a business
indicator slips.

Being code aware also allows OverOps to treat the code pipeline execution data as code. It
provides schema and structure to investigate what is happening so we can apply “schema” to
the stream and deliver this as rich structured output to your developers and other tools that
can use the OverOps data. The stream of information typically written to a log file is limited in
form and, unless there is a strict best practice, is widely varied from developer to developer.
(might we add, they are also extremely limited in valuable data/insight). Events in a log file are
usually formatted by a logging framework and are a schema-less string representation of an
event, with limited information stored in plain text. They are difficult to structure and classify
and often lost within the noise of millions of messages.

Understanding code before it is executed also allows OverOps to deliver all this value with only
a minimal impact on application performance. The code graph allows the platform to
proactively know an error or exception is going to be encountered so it just acts without
having to inform the SVM and slow it down. This ultimately means that OverOps can cover
and provide value in every environment, from dev to test to staging and especially, in
production. Without this critical capability, capturing this information would require you to
stop the SVM and effectively kill your application performance.

Finally, the code graph allows OverOps to distinguish one event from another more easily
because it knows where in the code an error or exception was encountered. In a log file, one
error will often look very much like another and even with a full stack trace it may take time to
sort out differences. This capability along with an ability to create a unique digital fingerprint of
an event, ultimately allows OverOps to effectively deduplicate events.

The code graph is a map that provides an understanding of what was meant to be executed
within the code and using this in context of the code execution pipeline is what allows
OverOps to extract hidden or difficult to ascertain data, including:

● Deployment/Build/Release Information
The code graph for each build is unique and it allows OverOps to map every error and
exception it captures to a particular build. This can be used to track down the pull
request and person associated with the event and if you look at all events related to a
build, it can help determine the overall quality of a release. This information is not
found in a log file unless a developer chooses to write it.

● Previous 250 Log Statements (including DEBUG in prod)
While collecting log statements seems mundane, this is very different. Since we have
the code graph, we can identify and collect log statements that may not actually be
executed by the SVM because of verbosity settings. OverOps knows what the

Page 8 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

developer meant to log so we can collect all warnings, debug/trace in all
environments, even production, regardless of whether they were written to the log or
not. This gives you developer level insight in production.

● Entry Points
A function can fail for many reasons but getting insight into all the different entry
points that may have caused the issue gives you better context into not just that event
but others that have caused the same error. More importantly it will help you track
back the origination of an end-to-end business transaction. The code graph in
OverOps allows you to gain benefit from this broad approach and helps you recognize
patterns that have resulted in the error. In order to do this with a log file would take
some serious work.

● Error Type
OverOps code graph is intelligent enough to proactively categorize database, network,
JVM, HTTP and AWS errors before they are ever encountered. Beyond these
standards, it can be customized to categorize by any package or library. With a log
file, you could get two errors in the same method and not be able to discern if it was a
functional error or system related.

OverOps can collect a lot of information that was previously impossible to capture and can be
incredibly useful to the developer or to operations teams. Using this data in the context of a
single event can certainly help with troubleshooting but looking at all errors in a build or by
application opens up a new world of use cases that ultimately allow us to deliver more reliable
software and establish a culture of accountability in our organizations. This is ultimately made
possible by the static and dynamic analysis that OverrOps provides.

The digital fingerprint of an error or exception

With the code graph and all the data that OverOps is able to capture, it can also create a
unique digital fingerprint of every event. And with unique signatures, it can analyze the event in
context of other events, applications and releases to create net new metadata for every event.

As noted in the last section, the code graph enables OverOps to help deduplicate events based
on where in the overall application the code is being executed. With fingerprints, OverOps can
further deduplicate and count events based on unique signature. This capability enables
OverOps to selectively capture complete context for an individual error. The platform is
intelligent to know if it needs to collect every incident or throttle/selectively choose over time
what it collects and maintain only a count of the number of times this has happened. This
approach has two side effects, it improves overall performance and reduces the amount of
information that has to be stored, making the entire platform more efficient.

Page 9 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

Signatures also contribute to the data we collect for each event as they allow OverOps to
understand the nature of each error/exception. Some of the additional items OverOps derives
include:

● New/Reintroduced Classification
With a fingerprint of an event we can compare it against every other event and
determine with high probability if it is new. If we combine this with the associated
release number we can identify if it is a regression as well. Many use this to
understand the overall quality trends of software over various releases.

● Frequency and failure rate
The fingerprint allows us to count how many times this explicit error has happened
which is the frequency. And with the code graph, we know the failure rate of the errors
as well as we know how many times the error happens epr run through this section of
code. This information helps us focus on issues that are causing the most pain..

● First seen/Last seen
With a fingerprint of an error we can also determine when it was first introduced and
when it was last seen. This has significant value when you use OverOps data to
investigate the impact of the event or the overall quality of a release or an application
in whole.

The digital fingerprint of every error and exception is only possible with OverOps and
extremely useful to classify and define focus for your teams. It is a foundation on which you
can ensure promotion of quality code and to create a culture of accountability within and
beyond your organization.

Using OverOps Data

Over the past three sections, we outlined some of the key technical capabilities found in
OverOps and the net new machine data we extract from your applications and services. This
wealth of data provides deep contextual content around every error/exception and is
ultimately structured and complete. In summary, the list of data includes:

● Full Stack Variable State
● Execution Pipeline Source Code
● Memory State
● State of Garbage Collection
● Operating System, Environment Variables and System Properties
● Active Threads
● Deployment/Build/Release Information
● Previous 250 Log Statements (including DEBUG in prod)

Page 10 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

● Entry Points
● Error Type
● New/Reintroduced Classification
● Frequency and failure rate
● First seen/Last seen

No other tool is capable of capturing this data without code modification and without a
significant performance impact, especially in production. The OverOps data is a big part of the
story but equally important is how you access and use this data. From root cause automation
to continuous reliability to AIOps, there are several business use cases that OverOps can fuel.
Before we delve into these, let’s review the technical capabilities found in OverOps that
enables you to access this data.

The OverOps ARC (Automated Root Cause) Analysis UI
OverOps isn’t just about the data, we also ship an intuitive and useful UI that allows you to
gather high level insight but also allows you to classify and sift through all events and also to
drill down into an explicit error to troubleshoot using this rich information.

The Dashboard that comes standard allows you to sort all events based on a variety of
parameters such as release, type, when they happened, where they happened and even by
type. You can look at all your uncaught exceptions or view DB or HTTP errors. You can also
sort by frequency and failure rate. With this powerful classification, you can use nearly every
variable that is caught to sort through these errors and find exactly what you’re looking for.

OverOps Dashboard and Classifications UI

From the dashboard you can investigate an error by double clicking on it and opening the
Automated Root Cause (ARC) analysis screen for the event. Here you are presented with a

Page 11 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

complete story for exactly what has happened. The ARC analysis screen is typically used by
developers to investigate this information. You will see the entire stack with the moment in
time of an error pointed out and as you mouse over the full source code, you will be able to
investigate the state of every variable in the execution call stack. You can also check out al the
log statements and the JVM state as well. It will show the complete set of data as collected
for that event in an intuitive and useful format.

OverOps Automated Root Cause (ARC) Analysis UI

The OverOps API & Data Extracts
OverOps includes a powerful API that allows you to control the platform and also integrate
and interact with the data in real time. The secure API is available and allows you to extract a
single event or to look at all them in aggregate. This can be used for instance from a Jenkins
plugin to query OverOps for quality metrics of a piece of code and regulate when it is safe to
promote. OverOps also includes an ability to extract the data in aggregate via StatsD or
directly to all your major tooling. ,Many use this interface to create their own metrics hubs or
dashboards using Grafana, but this can also be used to feed metrics dashboards in Splunk,
datadog an others.

Page 12 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

Reliability over time dashboard - provides insight into releases

Applications Reliability Dashboard in Grafana

Page 13 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

OverOps Workflow Integration
The platform is designed to work with all the tools you already have and there are several
explicit integration points beyond this API that allow you to insert it into your DevOps
workflow. For instance, some of these integrations include can:

● ARC Links for use in AppDynamics, Splunk, Dynatrace, etc…
As part of the processing of the snapshots, OverOps is present at the time a log file is
written and can insert a link into the log file itself that will direct you to the OverOps
ARC analysis screen that is associated to the error being logged. These links are
present for both logs (where they may not even be an exception) or for exceptions
(that may not even be logged - uncaught , swallowed). This is useful within any tool
that bases their functionality off log files, but especially useful with tools like Splunk,
AppDynamics and Dynatrace that help you know something has happened but only
present limited information for what has actually occurred. OverOps is used in these
situations to pick up where they leave off.

● Ticketing with Jira
As part of deployment of OverOps, many organizations enable direct integration with
Jira so that tickets can be created for certain events directly. With Jira integration,
tickets are created with explicit details about each event and the links mentioned
above can be placed into the description of the error. This approach greatly simplifies
the research a developer would have to conduct to fix and close an issue. Further it is
helpful to remedy the “cannot recreate” conversations between QA and dev.

● Alerting & Email (and generic Webhook)
Another key point of integration is for alerting the right resources when certain events
happen. OverOps allows you to configure direct integration with Slack, HipChat,
PagerDuty, ServiceNow and your email system so that information is directed
immediately to the right person. And if your alerting and workflow tool is not included
in the standard integrations, there is a WebHook API to accommodate it.

● Custom workflow and extensions
OverOps Extensions provides an AWS Lambda-based framework (and on-premises
code as an option) for organizations to create their own custom functions and
workflows based on the valuable OverOps data. So when an explicit event occurs, you
can customize the actions that are taken. With open access to OverOps’ machine
data and functional extensions, DevOps can enhance the entire software delivery
supply chain to improve reliability of their applications and services, and avoid costly
downtime.

Ultimately, OverOps takes a very open approach and philosophy so that this code-aware
application data can be used within and with the enterprise tools that are already deployed.

Page 14 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

SECTION THREE: REQUIREMENTS

Capturing this unique data across all environments, even production is not easy and has
explicit requirement. The solution must be simple and not require manual manipulation. It
must not have significant performance impact on the application it is monitoring. And finally, it
must be secure. OverOps meets all three of these requirements.

● No Code Modification or developer pre thought required
OverOps works at the software virtual machine (SVM) layer and uses the code graph
to understand when an error is logged or an exception is thrown. There is no need for
a developer to make any manual changes other than respecting the organizations
best practices for logging and exceptions. There is no need to change the build
process. This is the same design concept also allows OverOps to catch uncaught
exceptions. It is also what allows Overops to capture this complete insight, not just
the few variables the developer thought of.

● No significant impact on application performance
As noted in a previous section, the code graph is a major innovation in the OverOps
Platform. It not only provides contextual information for information gathering, but it
also provides significant performance gains. Having a map of all execution paths
allows OverOps to have the foresight into what is going to happen and eliminates the
need for any “thought” during execution it knows when an error or exception will be
thrown and captures it. Other approaches rely on native language calls that will slow
the SVM. While this might suffice in dev, it is not acceptable in production
environments. There are several other components in the overall architecture that
work walong with the code graph to keep the application performance impact to
always less than 3% of CPu and at steady state is typically under 2%.

● Security first design mindset
Third and most importantly, security first is a mindset within the OverOps team. There
are two main areas in which OverOps protects data. First, using static analysis via the
code graph, the platform can proactively redact personal information when it is
encountered in the code. For instance, if a social security number or password was to
be captured in a snapshot, OverOps will automatically redact this information so that
it is not disclosed. There are settings in the product to redact by a variable or field
name or by using pattern recognition. OverOps also implements strict encryption
policies of all the snapshot data and the code throughout the platform. This data is
encrypted from the time it is captured until it is seen.

Finally, it is important to address language coverage. Currently, OverOps works with all JVMs
and the .NET CLR, so it can cover Java, Scala, C# and other languages running on those
SVMs. This is important to note in the context of these requirements because there are other

Page 15 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

products that can capture some of the information OverOps can collect, but they do so at the
cost of not meeting these basic requirements. It is the philosophy of OverOps to extend the
capabilities to other languages but not before the platform meets these requirements and
more importantly is extremely stable and a non-risk for your production applications.

EPILOGUE

For more information or to schedule a meeting with us, please visit overops.com.

Page 16 | Net New Machine Data and Code-Aware Insight with OverOps

OverOps, Inc. 2018

